EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.
نویسندگان
چکیده
Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.
منابع مشابه
Differential content of glyphosate and its metabolites in Digitaria insularis biotypes
Experiments were carried out in controlled conditions to analyze the role of metabolism of glyphosate in Digitaria insularis (sourgrass) biotypes with differential response to the herbicide.
متن کاملSite-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene
Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...
متن کاملGlyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.
The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A compariso...
متن کاملGlyphosate Tolerance in Transgenic Canola by a Modified Glyphosate Oxidoreductase (gox) Gene
The engineering of transgenic canola (Brassica napus L. ) to make tolerance to the broad-spectrum herbicide, glyphosate, is one of the most effective approaches for weed management. Glyphosate inhibits the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) enzyme which functions in the shikimate pathway and has a key role in biosynthesis of aromatic amino acids required for survival of ...
متن کاملEffects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana
Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide's target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics and molecular research : GMR
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2016